

City University of Hong Kong

March 20, 2024

High Level Synthesis Based Hardware Security and IP Core Protection (IPP)

PROF. ANIRBAN SENGUPTA, PROFESSOR

FIET, FBCS, FIETE

IEEE Distinguished Visitor of IEEE Computer Society

IEEE Distinguished Lecturer of IEEE Consumer Technology Society

IEEE Senior Member

Deputy Editor-in-Chief, IET Computers and Digital Techniques (CDT)

Associate Editor, IEEE Transactions on VLSI Systems (of IEEE CS/IEEE CAS Society)

Associate Editor, IEEE Embedded Systems Letters (of IEEE CEDA)

Former Chair, IEEE Computer Society Technical Committee on VLSI

Former Chair and Board Member, IEEE Consumer Technology Society Technical Committee on Security & Privacy

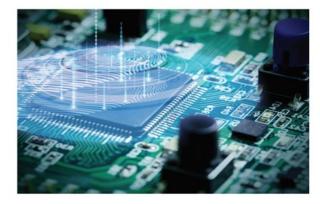
Former Editor-in-Chief, IEEE VLSI Circuits & Systems Letter (of IEEE Computer Society TCVLSI)

Former Associate Editor, IEEE Transactions on Consumer Electronics (TCE)

Former Associate Editor, IEEE Transactions on Aerospace & Electronic Systems (TAES)

Former Guest Editor, IEEE Transactions on CAD of Integrated Circuits and Systems(TCAD)

Former Visiting Scientist, Indian Statistical Institute (ISI)

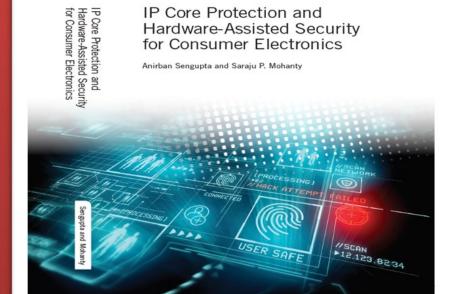

Department of Computer Science and Engineering

Indian Institute of Technology Indore

Email: asengupt@iiti.ac.in

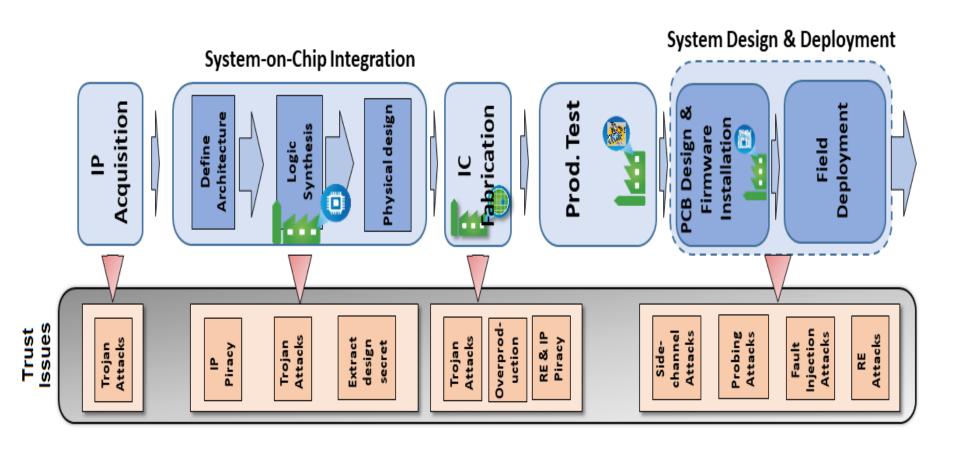
Web: http://www.anirban-sengupta.com

Anirban Sengupta



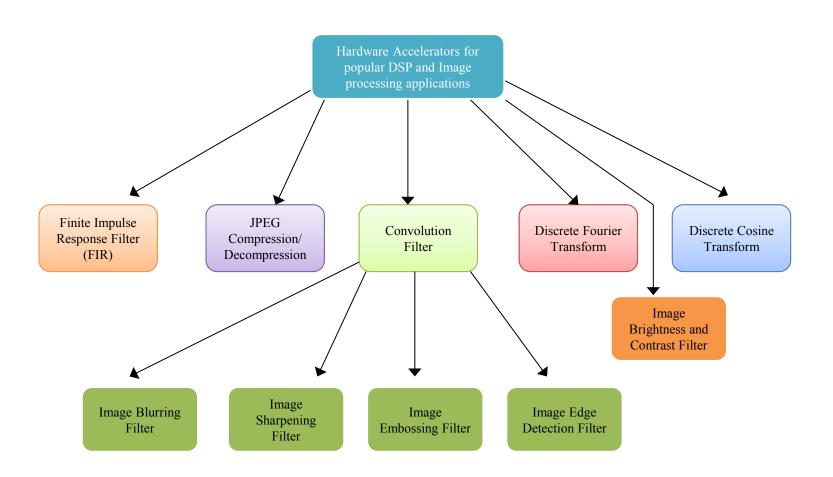
IP Core Protection and Hardware-Assisted Security for Consumer Electronics

Anirban Sengupta and Saraju P. Mohanty

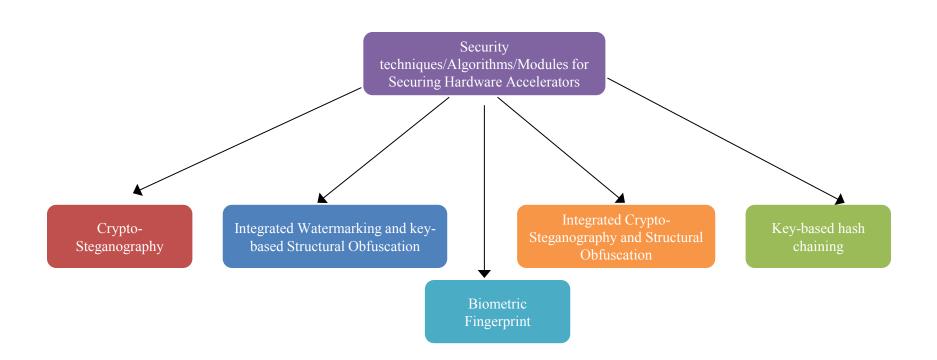

R

Introduction

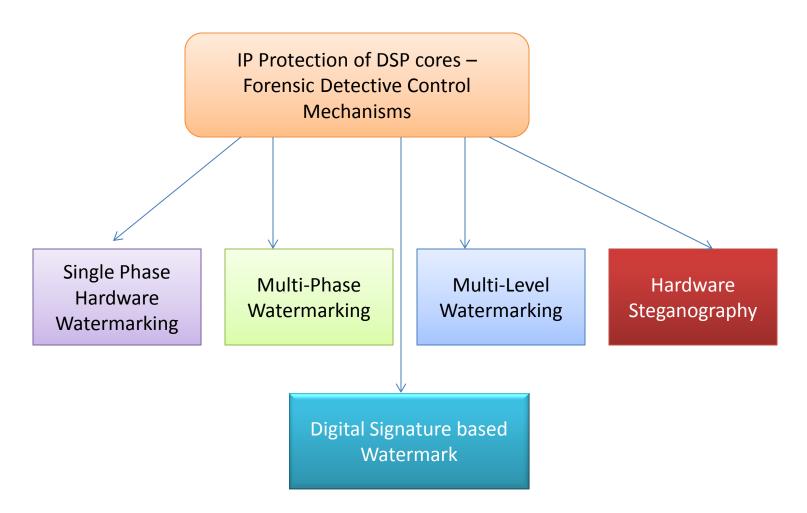
- Hardware Security and Intellectual Property (IP) Core protection is an emerging area of research for semiconductor community that focusses on protecting designs against standard threats such as reverse engineering, counterfeit, forgery, malicious hardware modification etc.
- Hardware security is broadly classified into two types: (a) authentication based approaches (b) obfuscation based approaches.
- The second type of hardware security approach i.e. obfuscation can again be further sub-divided into two types: (i) structural obfuscation (ii) functional obfuscation. Structural obfuscation transforms a design into one that is functionally equivalent to the original but is significantly more difficult to reverse engineer (RE), while the second one is active protection type that locks the design through a secret key.

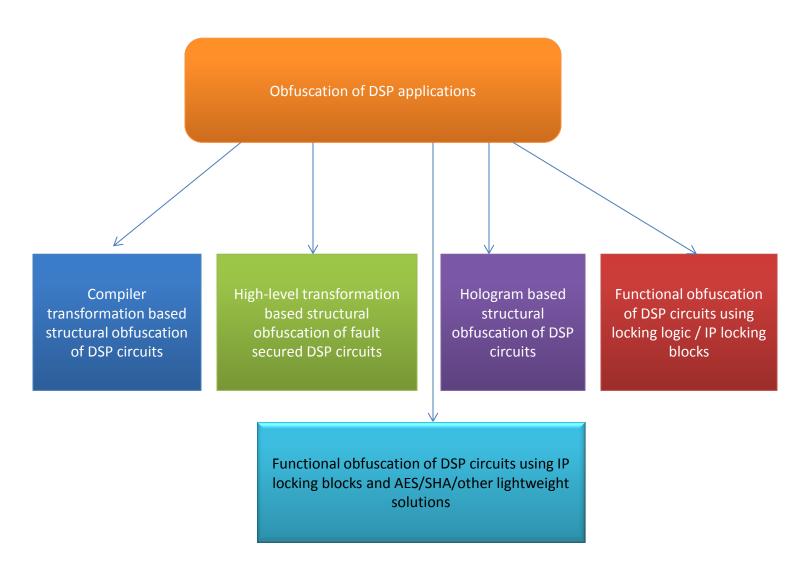

Anirban Sengupta "Frontiers in Securing IP Cores - Forensic detective control and obfuscation techniques", The Institute of Engineering and Technology (IET), 2020, ISBN-10: 1-83953-031-6, ISBN-13: 978-1-83953-031-9

IP Core Protection and Hardware Security

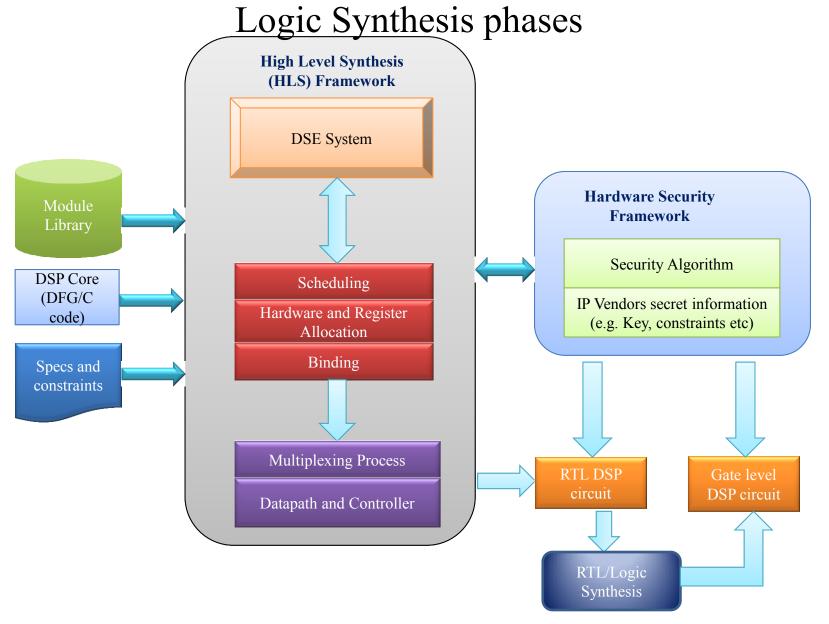


<u>CAD for Assurance – CAD for Assurance of</u> <u>Electronic Systems</u>

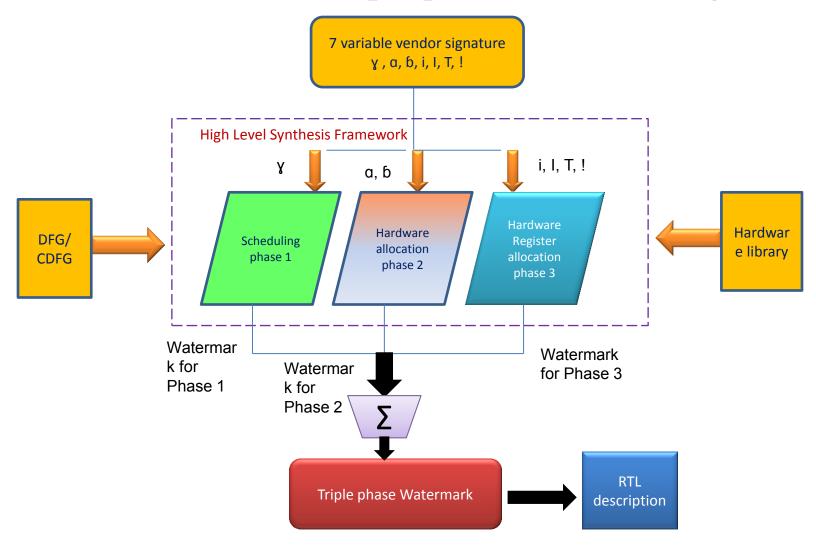

Hardware accelerators: Example


Hardware security techniques for securing hardware accelerators

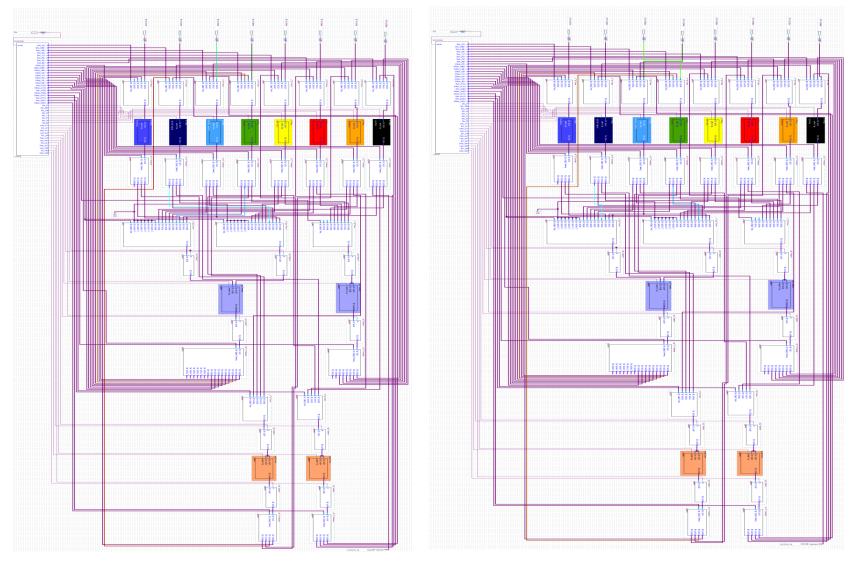
IP Protection of DSP cores – Forensic Detective Control Mechanisms



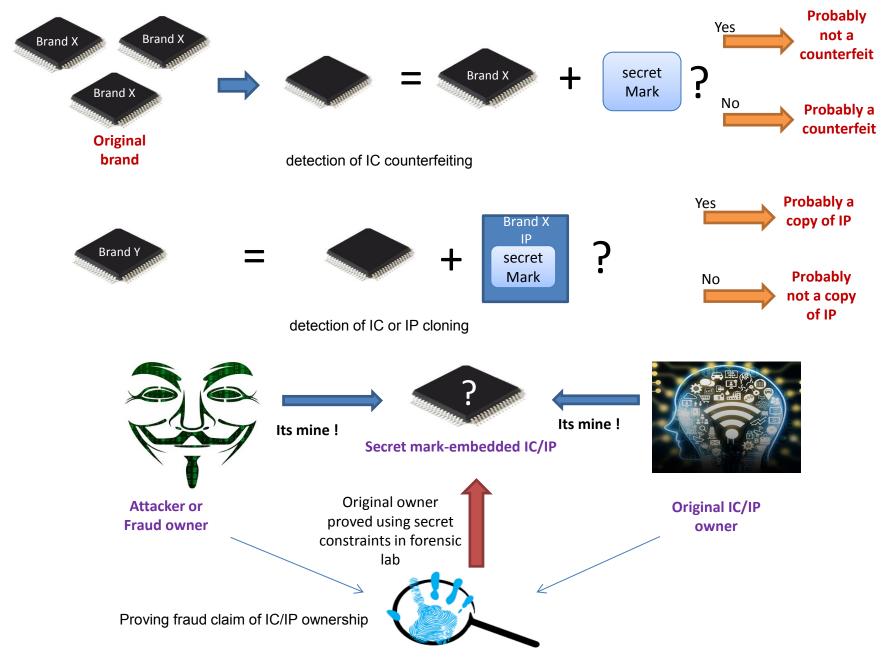
HLS based Hardware Security using Obfuscation


Anirban Sengupta "Frontiers in Securing IP Cores - Forensic detective control and obfuscation techniques", The Institute of Engineering and Technology (IET), 2020, ISBN-10: 1-83953-031-6, ISBN-13: 978-1-83953-031-9

Hardware Security Algorithms integrated with HLS and

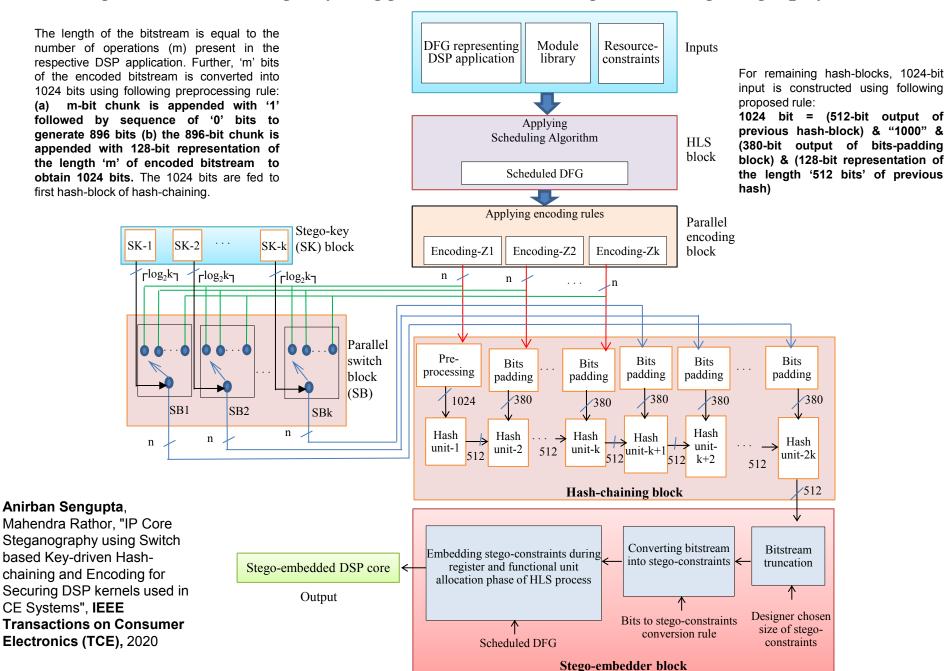

Anirban Sengupta "Frontiers in Securing IP Cores - Forensic detective control and obfuscation techniques", The Institute of Engineering and Technology (IET), 2020, ISBN-10: 1-83953-031-6, ISBN-13: 978-1-83953-031-9

HLS based Triple phase watermarking

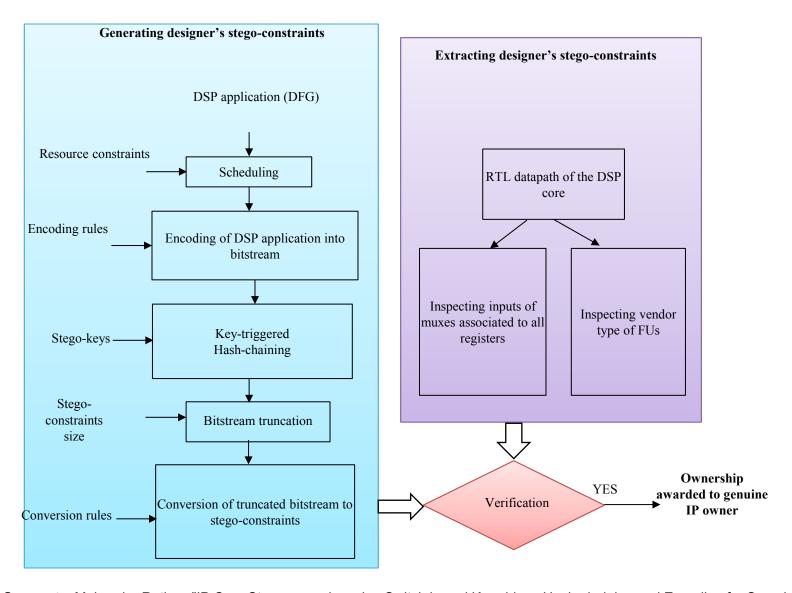


Anirban Sengupta, Dipanjan Roy, Saraju P Mohanty, "Triple-Phase Watermarking for Reusable IP Core Protection during Architecture Synthesis", IEEE Transactions on Computer Aided Design of Integrated Circuits & Systems (TCAD), Volume: 37, Issue: 4, April 2018, pp. 742 - 755

Watermarked FIR Vs Non-Watermarked FIR at RTL

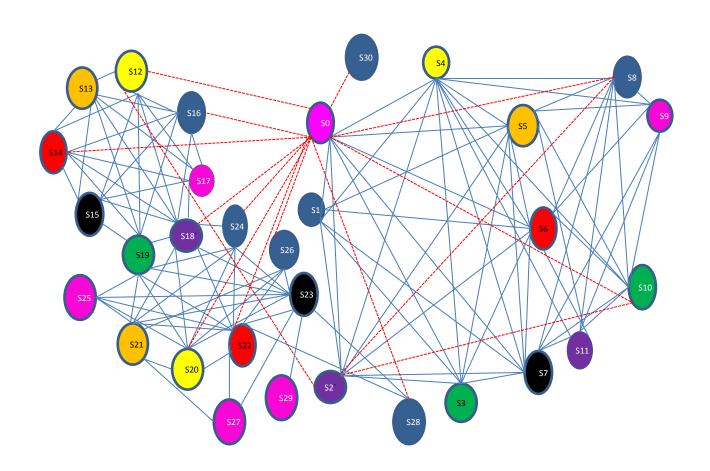


Anirban Sengupta, Dipanjan Roy, Saraju P Mohanty, "Triple-Phase Watermarking for Reusable IP Core Protection during Architecture Synthesis", **IEEE Transactions on Computer Aided Design of Integrated Circuits & Systems (TCAD),** Volume: 37, Issue: 4, April 2018, pp. 742 - 755

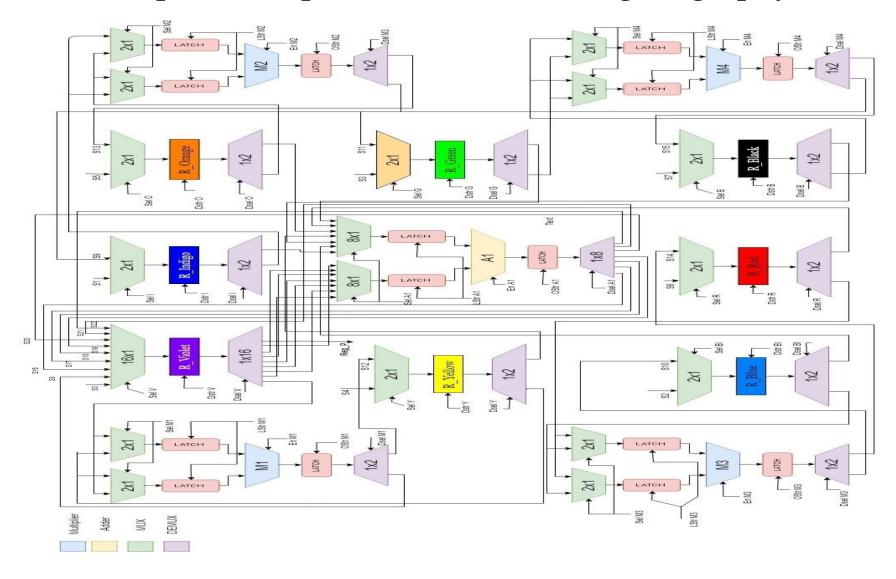


Anirban Sengupta, Mahendra Rathor "IP Core Steganography for Protecting DSP Kernels used in CE Systems", IEEE Transactions on Consumer Electronics (TCE), Volume: 65, Issue: 4, Nov. 2019, pp. 506 - 515

Securing DSP cores using key-triggered hash-chaining based steganography

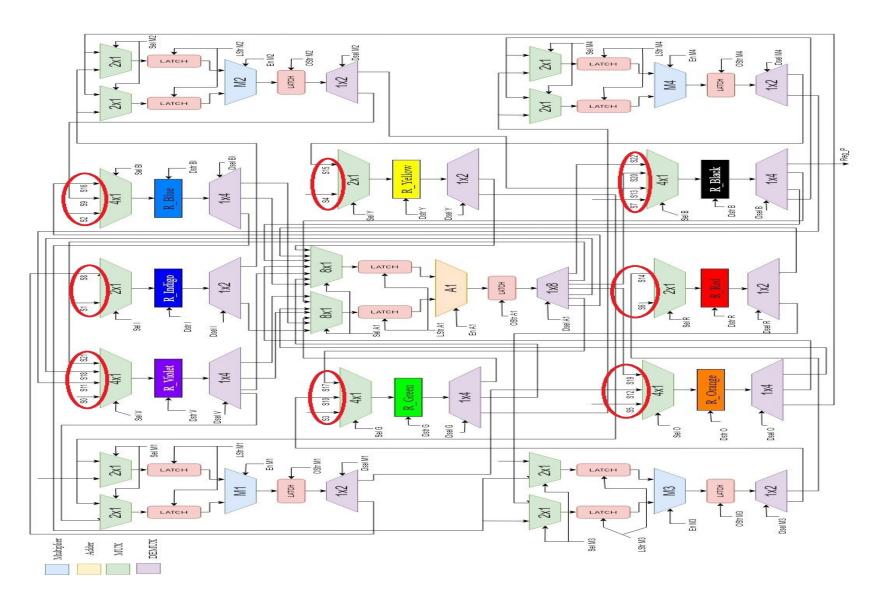


Detection process of steganography

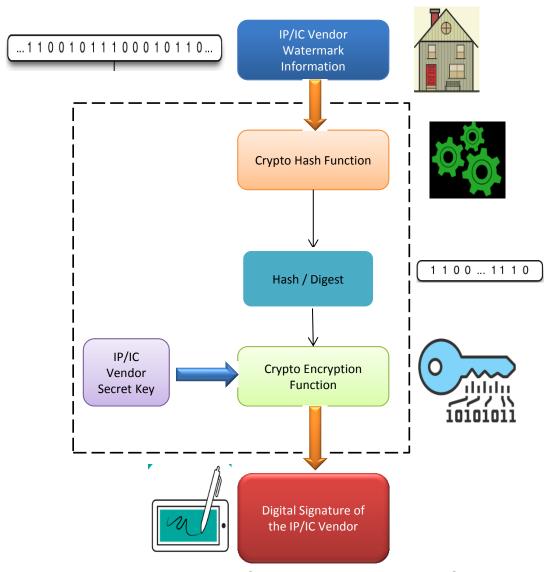


Anirban Sengupta, Mahendra Rathor, "IP Core Steganography using Switch based Key-driven Hash-chaining and Encoding for Securing DSP kernels used in CE Systems", **IEEE Transactions on Consumer Electronics (TCE)**, 2020

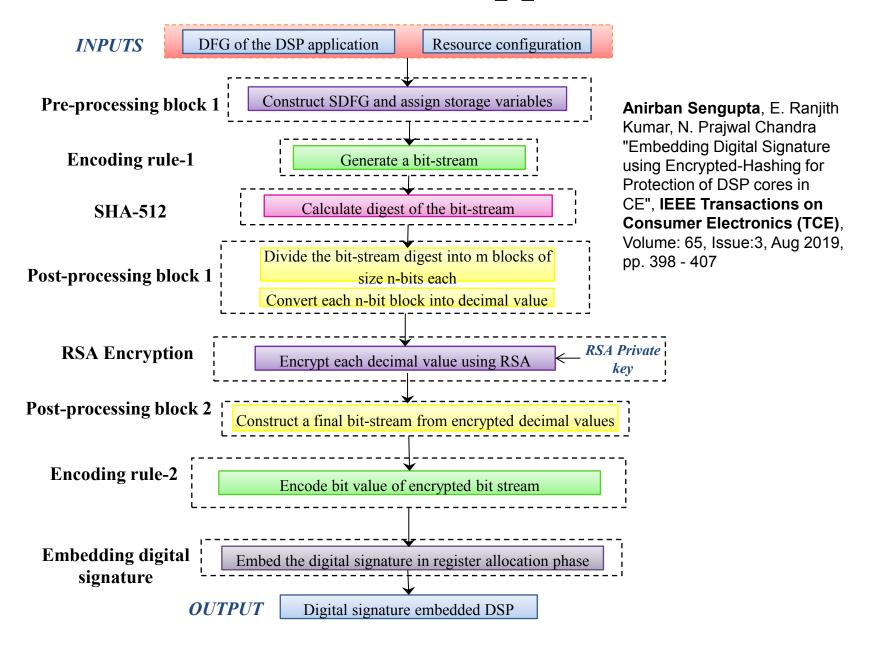
CIG of FIR filter hardware accelerator (IP core) after steganography/Watermarking



RTL datapath of 8-point DCT before steganography


Anirban Sengupta, Mahendra Rathor "IP Core Steganography for Protecting DSP Kernels used in CE Systems", IEEE Transactions on Consumer Electronics (TCE), Volume: 65, Issue: 4, Nov. 2019, pp. 506 - 515

RTL datapath of 8-point DCT after Steganography

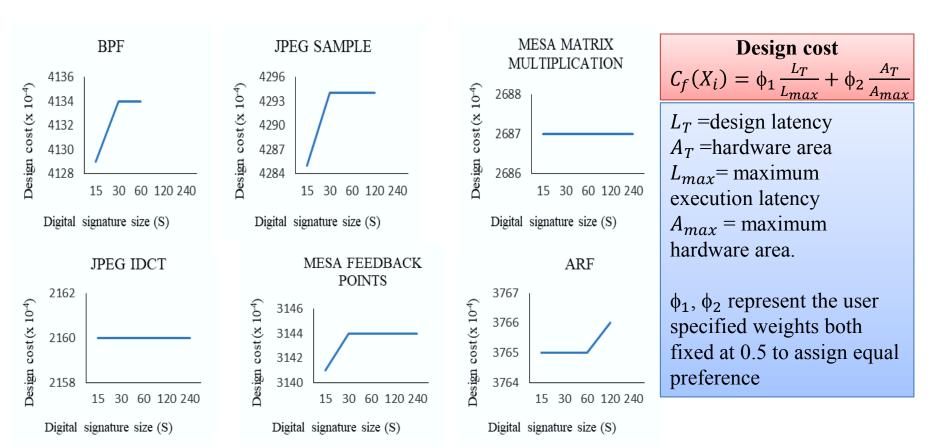


Anirban Sengupta, Mahendra Rathor "IP Core Steganography for Protecting DSP Kernels used in CE Systems", IEEE Transactions on Consumer Electronics (TCE), Volume: 65, Issue: 4, Nov. 2019, pp. 506 - 515

High-level process of creating digital signature for IP cores

HLS flow of the approach

Post-processing Block


- The encrypted decimal values— output of RSA module— are provided as input to the post-processing block 2.
- Each decimal value is converted to binary and these individual binary streams are concatenated to form a single bit-stream.
- This encrypted-hashed bit-stream is referred to as **Digital Signature**. The digital signature size can be selected based on vendor's choice from the continuous bit-stream.
- For instance, if the vendor selects digital signature size as 15, then the first 15 bits of the bit-stream is the digital signature.

Generating the Bit-stream of DCT Core

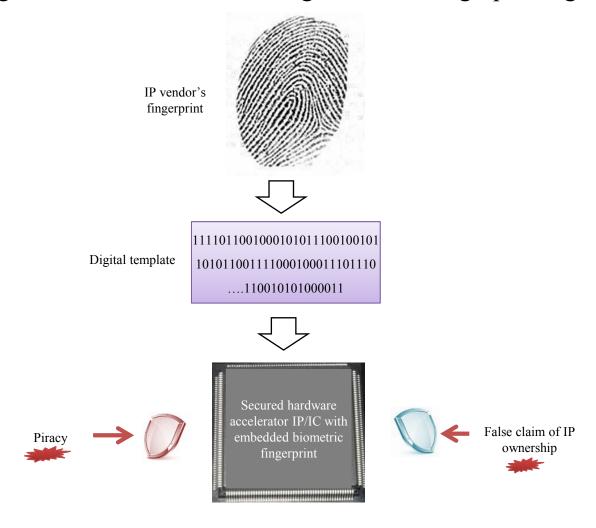
peration	Control Step	Bit
Number	Number	generated
1	1	0
2	1	1
3	2	1
4	1	1
5	3	0
6	2	0
7	4	1
8	2	0
9	5	0
10	2	0
11	6	1
12	3	1
13	7	0
14	3	1
15	8	1

Experimental Results

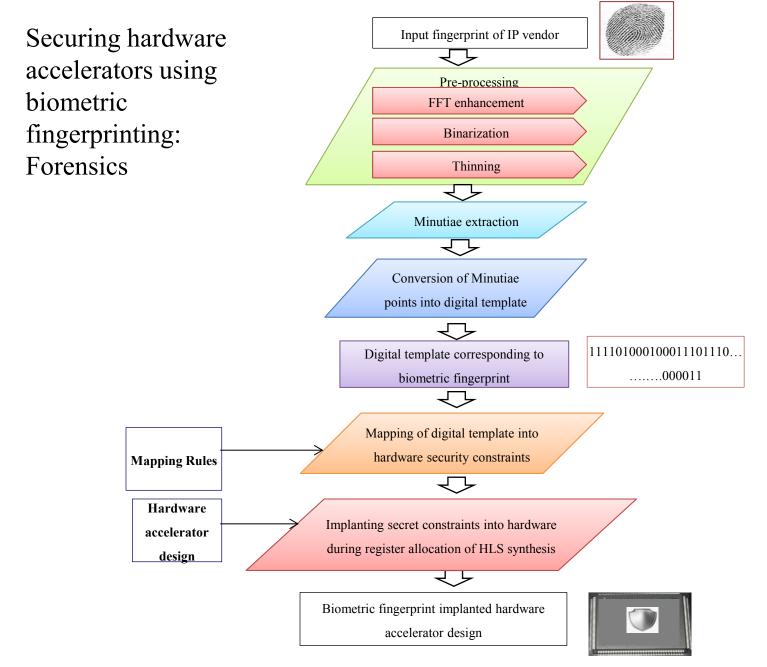
Graphical Representation of Design Cost for different benchmarks

Experimental Results

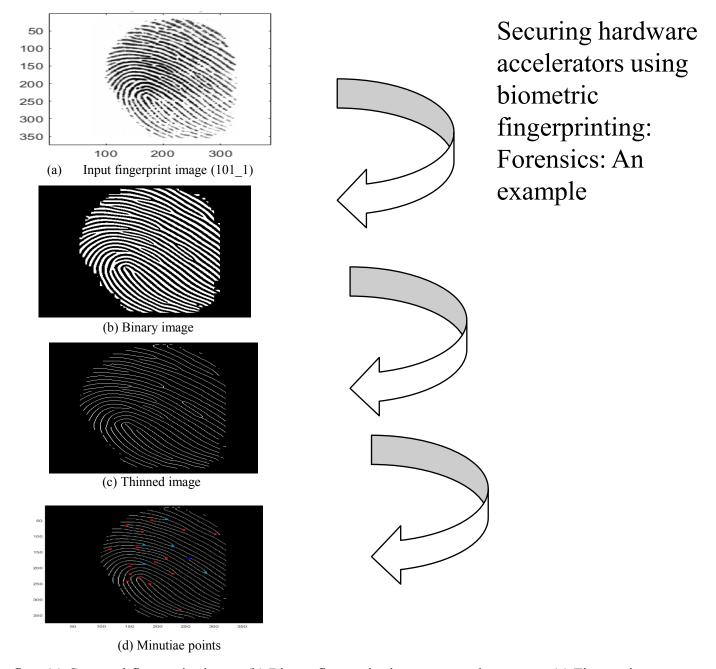
Evaluation of Robustness Using Probability of Coincidence (Pc)


$$P_c = \left(1 - \frac{1}{c}\right)^S$$

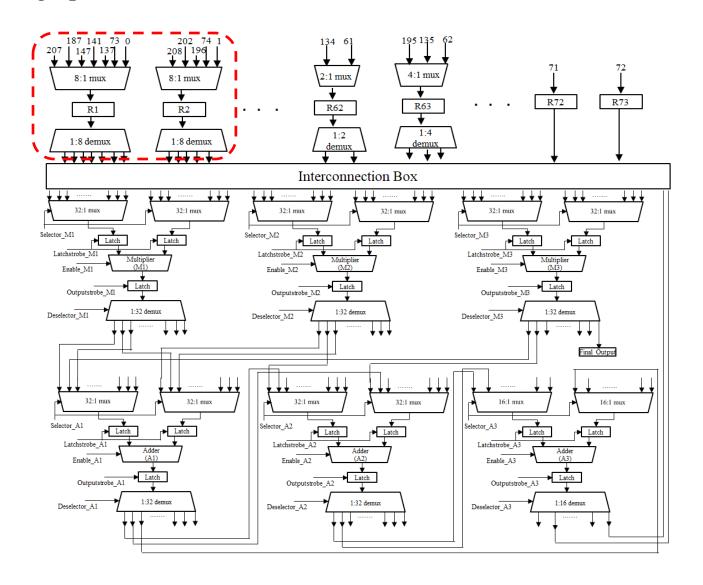
'c' denotes the number of colours used in the CIG and


'S' denotes the digital signature size

		Size of Digital signature (S)					
Benchmarks	С	S = 15	S = 30	S = 60	S = 120	S = 240	
Denominarks		P_{c}	P_{c}	P_c	P_{c}	P_{c}	
BPF	6	0.0649	4.2127x10 ⁻³	1.7747x10 ⁻⁵	3.1496x10 ⁻¹⁰	9.9198x10 ⁻²⁰	
JPEG SAMPLE	10	0.2059	0.0424	1.7970x10 ⁻³	3.2292x10 ⁻⁶	1.0428x10 ⁻¹¹	
JPEG IDCT	29	0.5907	0.3490	0.1218	0.0148	2.1999x10 ⁻⁴	
MESA FEEDBACK POINTS	17	0.4028	0.1622	0.0263	6.9267x10 ⁻⁴	4.7979x10 ⁻⁷	
ARF	8	0.1349	0.0182	3.3150x10 ⁻⁴	1.0989x10 ⁻⁷	1.2076x10 ⁻¹⁴	
MESA MATRIX MULTIPLICATION	23	0.5134	0.2635	0.0695	4.8237x10 ⁻³	2.3268x10 ⁻⁵	


Securing hardware accelerators using biometric fingerprinting: Forensics

Anirban Sengupta, Mahendra Rathor "Securing Hardware Accelerators for CE Systems using Biometric Fingerprinting", **IEEE Transactions on Very Large Scale Integration Systems (TVLSI)**, Accepted, 2020



Anirban Sengupta, Mahendra Rathor "Securing Hardware Accelerators for CE Systems using Biometric Fingerprinting", **IEEE Transactions on Very Large Scale Integration Systems (TVLSI)**, Accepted, 2020

Minutiae points extraction flow (a) Captured fingerprint image (b) Binary fingerprint image post enhancement (c) Fingerprint image post applying thinning (d) Fingerprint image with minutiae points located

Secured datapath of JPEG compression hardware accelerator implanted with biometric fingerprint

Detecting Biometric Fingerprint in a hardware accelerator

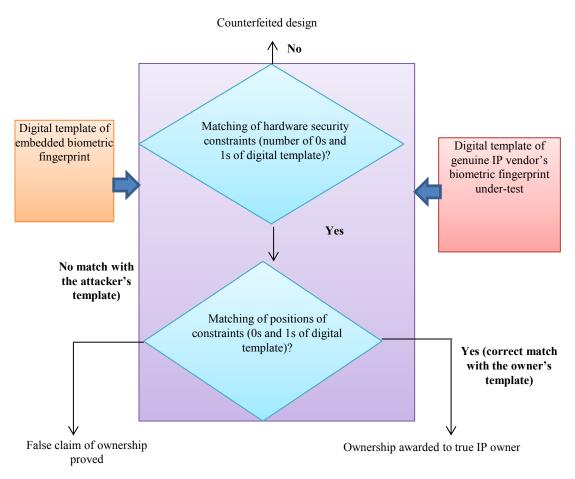
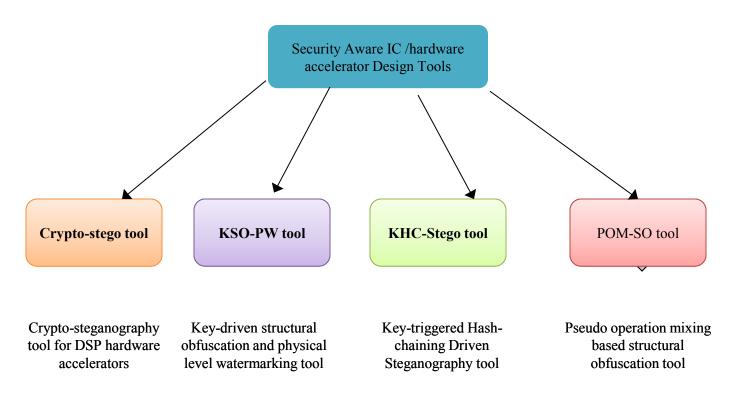
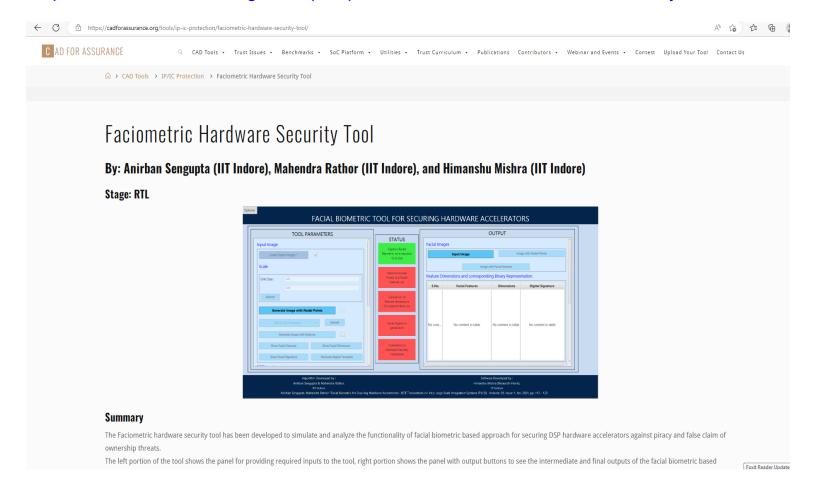



Fig. 9. Proving true IP ownership using proposed detection approach

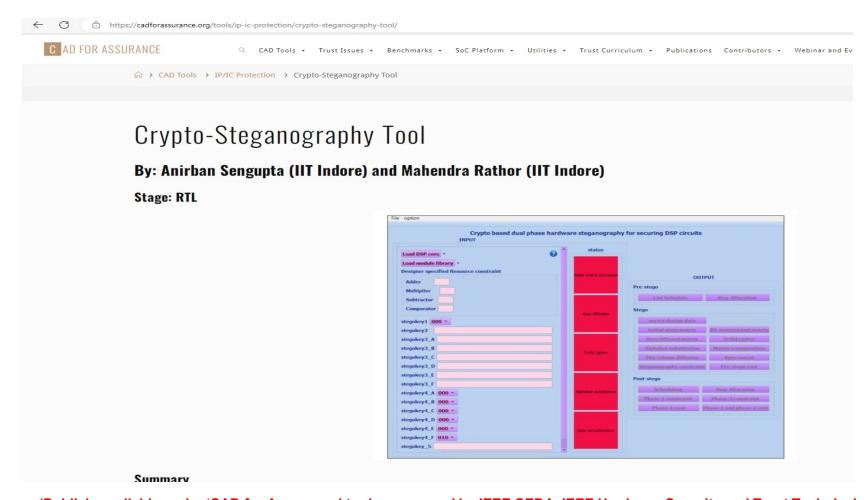
Our in-house hardware security tools for designing secured accelerators

Released publicly from our group in Sep 2020!


http://www.anirban-sengupta.com/Hardware_Security_Tools.php

Anirban Sengupta "Frontiers in Securing IP Cores - Forensic detective control and obfuscation techniques", The Institute of Engineering and Technology (IET), 2020, ISBN-10: 1-83953-031-6, ISBN-13: 978-1-83953-031-9

Faciometric Hardware Security Tool – CAD for Assurance


https://cadforassurance.org/tools/ip-ic-protection/faciometric-hardware-security-tool/

(Publicly available under 'CAD for Assurance' tools sponsored by IEEE CEDA, IEEE Hardware Security and Trust Technical Committee, and Warren B. Nelms Institute for the Connected World at University of Florida (Public access of these tools > 3200 times))

<u>Crypto-Steganography Tool – CAD for</u> Assurance

https://cadforassurance.org/tools/ip-ic-protection/crypto-steganography-tool/

(Publicly available under 'CAD for Assurance' tools sponsored by IEEE CEDA, IEEE Hardware Security and Trust Technical Committee, and Warren B. Nelms Institute for the Connected World at University of Florida (Public access of these tools > 3200 times))

IP Piracy – CAD for Assurance

https://cadforassurance.org/trust-issues/ip-piracy/

IP Piracy

Description

The globalization of the semiconductor supply chain has led to the introduction of the fabless manufacturing model. As such, semiconductor companies have started outsourcing their IP design to multiple (potentially untrusted) entities with the intention of reducing cost and time. However, this has resulted in the introduction of new security challenges such as IP piracy. In the case of IP piracy, an IP designer in a third-party design house may illegally pirate the IP without the knowledge and consent of the designer. To address this issue, a number of design-for-trust techniques such as logic locking, IC camouflaging, and split manufacturing methods have been developed. Some of the tools developed to address this issue are the ObfusGEM simulator and Network Flow Attack for Split Manufacturing.

Related Tools

- Functional Corruptibility-Guided SAT-Based Attack on Sequential Logic Encryption
- HW2VEC
- Faciometric Hardware Security Tool
- SegL: Scan-Chain Locking and a Broad Security Evaluation
- SIGNED: Secure Lightweight Watermarking Framework
- DANA: Universal Dataflow Analysis for Gate-Level Netlist Reverse Engineering
- <u>KHC-Stego Tool: Key-Triggered Hash-Chaining Driven Steganography Tool</u>
- Crypto-Steganography Tool
- Network Flow Attack For Split Manufacturing
- ObfusGEM

Publications

Sengupta, Anirban

Cryptography driven IP steganography for DSP Hardware Accelerators Book Forthcoming

Forthcoming, ISBN: 978-1-83953-306-8.

BibTeX

IP Piracy – CAD for Assurance

https://cadforassurance.org/trust-issues/ip-piracy/

Publications

Sengupta, Anirban

Cryptography driven IP steganography for DSP Hardware Accelerators Book Forthcoming

Forthcoming, ISBN: 978-1-83953-306-8.

BibTeX

Sengupta, Anirban

Key-triggered Hash-chaining based Encoded Hardware Steganography for Securing DSP Hardware Accelerators Book Forthcoming

Forthcoming, ISBN: 978-1-83953-306-8.

BibTeX

Rathor, Mahendra; Sengupta, Anirban

IP Core Steganography Using Switch Based Key-Driven Hash-Chaining and Encoding for Securing DSP Kernels Used in CE Systems Journal Article

In: IEEE Transactions on Consumer Electronics, vol. 66, no. 3, pp. 251-260, 2020, ISSN: 1558-4127.

Abstract | Links | BibTeX

Zuzak, Michael; Srivastava, Ankur

ObfusGEM: Enhancing Processor Design Obfuscation Through Security-Aware On-Chip Memory and Data Path Design Inproceedings

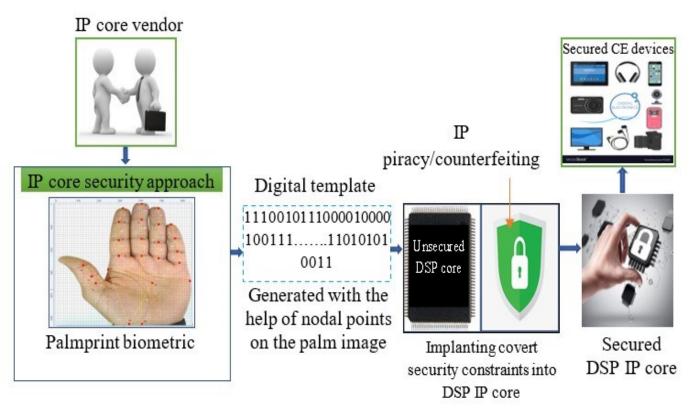
In: International Symposium on Memory Systems (MEMSYS), 2020.

BibTeX

Sengupta, Anirban; Rathor, Mahendra

Structural Obfuscation and Crypto-Steganography-Based Secured JPEG Compression Hardware for Medical Imaging Systems Journal Article

In: IEEE Access, vol. 8, pp. 6543-6565, 2020, ISSN: 2169-3536.

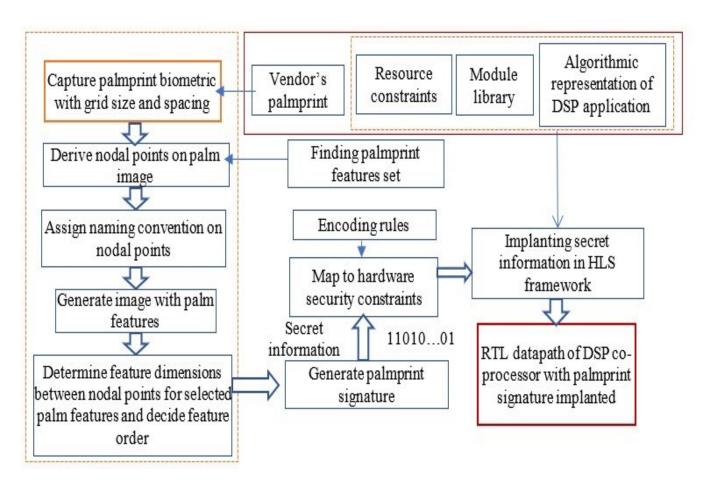

Abstract | Links | BibTeX

Rathor, Mahendra; Sengupta, Anirban

Design Flow of Secured N-Point DFT Application Specific Processor Using Obfuscation and Steganography Journal Article

In: IEEE Letters of the Computer Society, vol. 3, no. 1, pp. 13-16, 2020, ISSN: 2573-9689.

Palmprint based Hardware Security for IPP

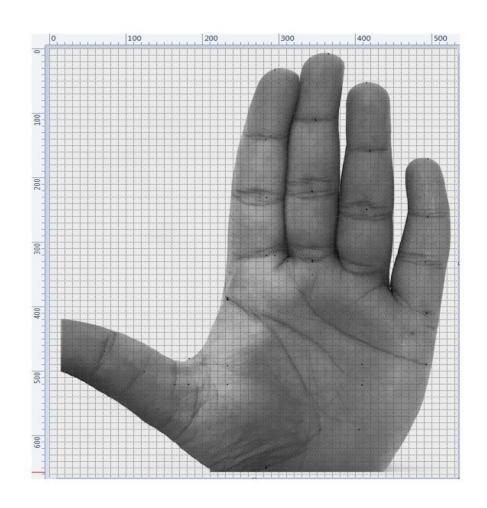


Securing reusable DSP IP core used in CE systems

Anirban Sengupta, Rahul Chaurasia, Tarun Reddy "Contact-less Palmprint Biometric for Securing DSP Coprocessors used in CE systems", **IEEE Transactions on Consumer Electronics (TCE)**, Volume: 67, Issue: 3, August 2021, pp. 202-213

Rahul Chaurasia, Aditya Anshul, Anirban Sengupta "Palmprint Biometric vs Encrypted Hash based Digital Signature for Securing DSP Cores Used in CE systems", IEEE Consumer Electronics (CEM), Volume: 11, Issue: 5, September 2022, pp. 73-80

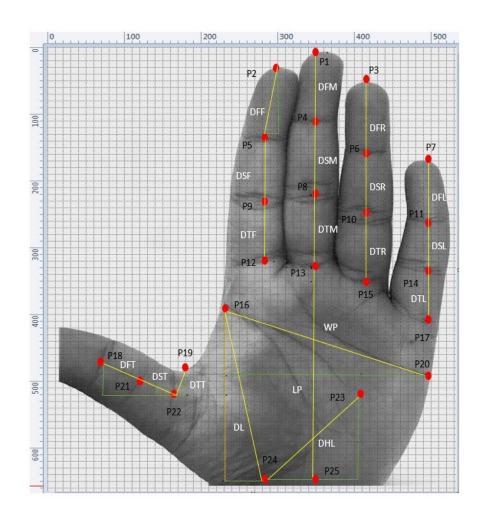
Palmprint based Hardware Security for IPP


Anirban Sengupta, Rahul Chaurasia, Tarun Reddy "Contact-less Palmprint Biometric for Securing DSP Coprocessors used in CE systems", **IEEE Transactions on Consumer Electronics (TCE)**, Volume: 67, Issue: 3, August 2021, pp. 202-213

Rahul Chaurasia, Aditya Anshul, Anirban Sengupta "Palmprint Biometric vs Encrypted Hash based Digital Signature for Securing DSP Cores Used in CE systems", **IEEE Consumer Electronics (CEM)**, Volume: 11, Issue: 5, September 2022, pp. 73-80 35

Palmprint based Hardware Security for IPP

> Capturing palm image


- At first the palmprint biometric of the authentic vendor or designer is captured and subsequently image of the captured palmprint is subjected to a specific grid size/spacing.
- This helps in generating the nodal points precisely.

Anirban Sengupta, Rahul Chaurasia, Tarun Reddy "Contact-less Palmprint Biometric for Securing DSP Coprocessors used in CE systems", **IEEE Transactions on Consumer Electronics (TCE)**, Volume: 67, Issue: 3, August 2021, pp. 202-213

➤ Generating image with chosen palm features and nodal points

- Finding Palmprint Feature
 Set and Deriving Nodal
 Points for Captured
 Palmprint Biometric.
- Assigning Naming
 Convention and Deriving
 Palmprint Image with
 Selected Feature set.

		Naming conventions of	
Feature #	Palmprint feature name	nodal points	Co-ordinates (x1,y1)- (x2,y2)
F1	Distance between start of life line and end of life line (DL)	(P16) – (P24)	(230, 390)- (285, 650)
F2	Distance between datum points of head line and life line (DHL)	(P23) — (P24)	(405, 520) -(285, 650)
F3	Width of the palm (WP)	(P16) - (P20)	(230, 390)- (495, 490)
F4	Length of palm (LP)	(P13) – (P25)	(350, 325)- (350, 650)
F5	Distance between first consecutive intersection points of forefinger (DFF)	(P2) – (P5)	(300, 30)- (285, 130)
F6	Distance between second consecutive intersection points of forefinger (DSF)	(P5) – (P9)	(285, 130)- (285, 230)
F7	Distance between third consecutive intersection points of forefinger (DTF)	(P9) – (P12)	(285, 230)- (285, 320)
F8	Distance between first consecutive intersection points of middle finger (DFM)	(P1) — (P4)	(350, 5)- (350, 110)
F9	Distance between second consecutive intersection points of middle finger (DSM)	(P4) – (P8)	(350, 110)- (350, 220)
F10	Distance between third consecutive intersection points of middle finger (DTM)	(P8) – (P13)	(350, 220)- (350, 325)
F11	Distance between first consecutive intersection points of ring finger (DFR)	(P3) – (P6)	(415, 50)- (415, 160)
F12	Distance between second consecutive intersection points of ring finger (DSR)	(P6) – (P10)	(415, 160)- (415, 245)
F13	Distance between third consecutive intersection points of ring finger (DTR)	(P10) – (P15)	(415, 245)- (415, 355)
F14	Distance between first consecutive intersection points of little finger (DFL)	(P7) – (P11)	(495, 170)- (495, 265)
F15	Distance between second consecutive intersection points of little finger (DSL)	(P11) — (P14)	(495, 265)- (495, 335)
F16	Distance between third consecutive intersection points of little finger (DTL)	(P14) – (P17)	(495, 335)- (495, 405)
F17	Distance between first consecutive intersection points of thumb finger (DFT)	(P18) – (P21)	(70, 470)- (120, 495)
F18	Distance between second consecutive intersection points of thumb finger (DST)	(P21) – (P22)	(120, 495)- (165, 520)
F19	Distance between starburst point and third intersection point of thumb (DTT)	(P19) – (P22)	(180, 480) -(165, 520)
	intersection point of that to (D11)		

- > Finding **Feature Dimensions** and Deriving Palmprint Signature Based on the Selected Feature Order
- For example, a palmprint signature for the selected order of palmprint features ("DL+ DHL --- \neq DTT". Where, ' \neq ' represents the concatenation operator) after concatenation is as follows:
- Palmprint Signature: "100001001.1110110000.111010001111010111.---.11111"

FEATURE DIMENSION AND CORRESPONDING BINARY REPRESENTATION OF CHOSEN PALMPRINT FEATURES

Feature #	Feature name	Feature dimension	Binary representation			
F1	DL	265.75	100001001.11			
F2	DHL	176.91	10110000.111010001111010111			
F3	WP	283.24	100011011.0011110101110000101			
F4	LP	325	101000101			
F5	DFF	101.11	1100101.00011100001010001111			
F6	DSF	100	1100100			
F7	DTF	90	1011010			
F8	DFM	105	1101001			
F9	DSM	110	1101110			
F10	DTM	105	1101001			
F11	DFR	110	1101110			
F12	DSR	85	1010101			
F13	DTR	110	1101110			
F14	DFL	95	1011111			
F15	DSL	70	1000110			
F16	DTL	70	1000110			
F17	DFT	55.90	110111.1110011001100110011			
F18	DST	51.45	110011.01110011001100110011			
F19	DTT	42.72	101010.10111000010100011111			

Note: Size of the palmprint signature varies based on the number of chosen palm features by the vendor for signature generation (depending on the required security 39 strength corresponding to target application).

Deriving the Covert Security Constraints and Implanting into Target IP core Design

- Post obtaining the digital template of palmprint signature, corresponding hardware security constraints are generated based on the encoding rules.
- The encoding rules for the signature bits are as follows:

The bit '1' embeds an edge between node pair (odd-odd), bit '0' embeds an edge between node pair (even-even). Moreover, the binary bit '.' embeds an edge between node pair (0, integer) into the CIG of target DSP design.

• For example, for a sample design having 31 storage variables (T0 to T30) executing through 8 registers (R1 to R8), the generated security constraints corresponding to the zeros are: <T0, T2>, <T0, T4>---<T16, T28>, the security constraints corresponding to ones are: <T1, T3>, ----<T27, T29> and corresponding to the binary points are: <T0, T1>, <T0, T3>, ---, <T0, T11>.

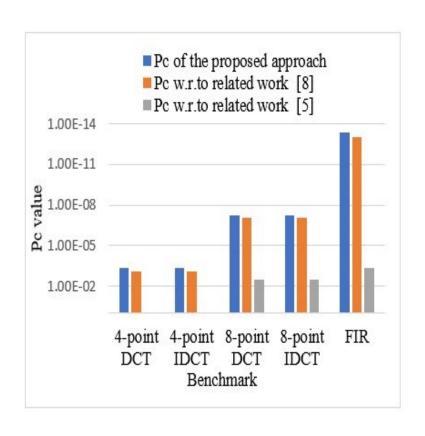
TABLE I
REGISTER ALLOCATION OF A TARGET HARDWARE IP CORE
POST IMPLANTATION

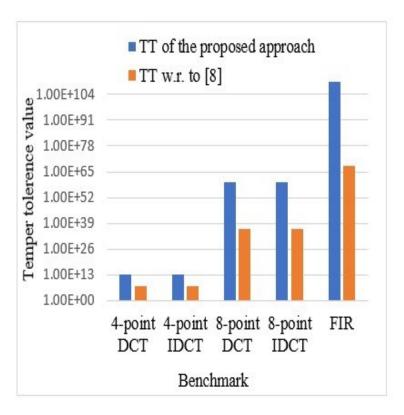
Registers	i0	i1	i2	i3	i4	i5	i6	i7	i8	i9
R1	T0	T8	T17	T24	T25	T26	T27	T28	T29	T30
R2	T1	T9	T16							
R3	T2	T11	T18	T18					+	
R4	T3	T10	T19	T19	T19					
	T4	T4	T13	T20	T20	T20			-	
R6	T5	T5	T12	T21	T21	T21	T21			
R7	T6	T6	T15	T22	T22	T22	T22	T22		
R8	T7	T7	T14	T23	T23	T23	T23	T23	T23	
R9		T8	T19	T19	T19					
R10		T9		T24		T26		T28		T30
R11			T18	T18	T25					••
R12		•		T20	T20	T20	T27	-	•	
R13		-	-	T22	T22	T22	T22	T22	T29	
R14			-	T21	T21	T21	T21		-	
R15				T23	T23	T23	T23	T23	T23	

RESULTS AND DISCUSSION

• The proposed palmprint biometric approach is analyzed in terms of security and design overhead.

Security Analysis:


- The security of the proposed approach is analyzed in terms of probability of coincidence (Pc) and temper tolerance (TT) ability.
- The Pc metric is formulated as follows:


$$Pc = \left(1 - \frac{1}{\tau}\right)^{S} \tag{1}$$

• The TT metric is formulated as follows:

$$TT = P^Q \tag{2}$$

Comparison of Probability of Coincidence and Tamper Tolerance Ability with Previous Works

^[5] A. Sengupta and M. Rathor, "IP core steganography for protecting DSP kernels used in CE systems," IEEE Trans. Consum. Electron., vol. 65, no. 4, pp. 506-515, 2019.

^[8] A. Sengupta and M. Rathor, "Securing hardware accelerators for CE systems using biometric fingerprinting," IEEE Trans. Very Latge Scale Integr. (VLSI) Syst., vol. 28, no. 9, pp. 1979-1992, 2020, doi: 10.1109/TVLSI.2020.2999514.

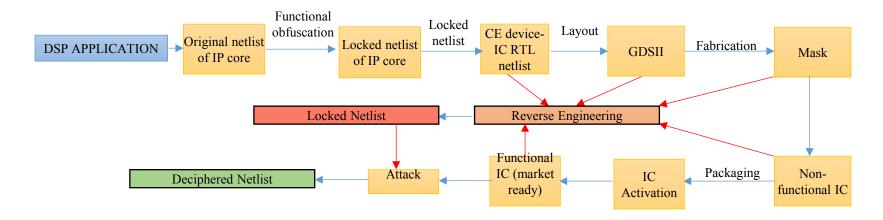
Design Cost Overhead Post Implanting the Palmprint Signature

Design cost Analysis:

Design cost can be measured using the following metric:

$$Z = h1 \frac{\nabla t}{\nabla \max} + h2 \frac{\Delta t}{\Delta \max}$$
 (3)

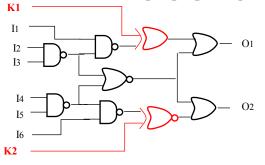
• Design cost overhead post implanting the palmprint signature into the design is minimal (0.2%-0.8%) as evident from Table II.

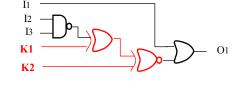

DESIGN COST PRE AND POST EMBEDDING PALMPRINT BIOMETRIC CONSTRAINTS

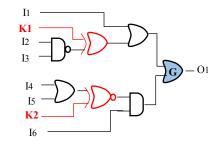
Benchmarks	Design cost of baseline	Design cost of palmprint implanted design	% Cost overhead
4-pointDCT	0.5611	0.5623	0.2%
4-point IDCT	0.5611	0.5623	0.2%
8-pointDCT	.4721	.4740	0.4%
8-point IDCT	.4721	.4740	0.4%
FIR	.4443	.4479	0.8%

Key Features

- Presented a contact-less palmprint biometric security approach for securing the reusable hardware IP core.
- The approach enables the seamless detection of pirated/counterfeited DSP IPcores used in CE systems, thus ensuring consumers safety and protecting IP/brand value, returning revenue and resolving traffic bleed.
- Any DSP based intellectual property (IP) core can be embedded with proposed palmprint signature to distinguish between authentic and its fake versions.
- The biometric palmprint constraints generated through the proposed approach is non-replicable and non-vulnerable as compared to hardware steganography and hardware watermarking approaches.
- The work presents stronger security and minimal design overhead in parallel, compared to the existing state of the art approaches.


How Hardware of a CE device can be compromised?



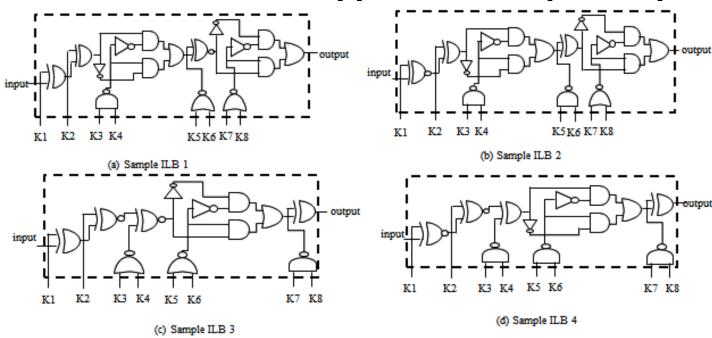

- Reverse engineering (RE) of a DSP core is a process of gaining the complete understanding of its **functionality**, **design** and **structure**.
- However, RE can be used for dishonest intention such as overbuilding, piracy, or counterfeiting a DSP core or inserting a hardware Trojan.

Anirban Sengupta, Deepak Kachave, Dipanjan Roy "Low Cost Functional Obfuscation of Reusable IP Cores used in CE Hardware through Robust Locking", IEEE Transactions on Computer Aided Design of Integrated Circuits & Systems (TCAD), 2019

Possible Threat Scenarios

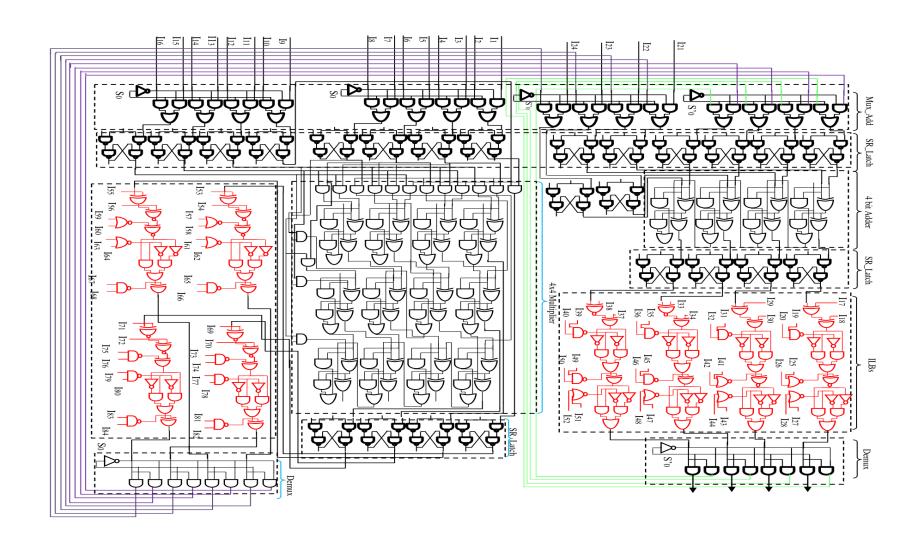
Isolated key gates K1 and K2

Run of key gates K1 and K2


Concurrently mutable key gates K1 and K2

Sensitization attack:

- a. **Isolated key-gates**: As there is no path between K1 and K2, they are isolated key-gates. An attacker can sensitize the value of K1 as 0 to the O1 by applying '100XXX' i/p pattern.
- **b. Run of key-gates**: If a set of key-gates are connected back-to-back. It increases the possible correct key combinations. Here, both '01' and '10' are correct key.
- c. Concurrently mutable key-gates: If two or more key-gates converges but have no common path between them. Here, applying I_6 =0 will mute K2, then K1 can be sensitize at O1.


Anirban Sengupta, Deepak Kachave, Dipanjan Roy "Low Cost Functional Obfuscation of Reusable IP Cores used in CE Hardware through Robust Locking", IEEE Transactions on Computer Aided Design of Integrated Circuits & Systems (TCAD), 2019

IP core locking blocks (ILBs)

- Each ILB consist of 8-bit key value inserted into each bit of output data.
- ILBs are designed using the different combination of AND, NAND, NOT, XOR and XNOR gates.
- Structures of ILB depend on the key values.
- Innumerable different structures of ILBs with the same area is possible.

Obfuscated gate structure of 4-bit FIR designed using

- Anirban Sengupta "Frontiers in Securing IP Cores Forensic detective control and obfuscation techniques", The Institute of Engineering and Technology (IET), 2020, ISBN-10: 1-83953-031-6, ISBN-13: 978-1-83953-031-9
- Anirban Sengupta, Mahendra Rathor "Protecting DSP Kernels using Robust Hologram based Obfuscation", IEEE Transactions on Consumer Electronics, Volume: 65, Issue: 1, Feb 2019, pp. 99-108
- Anirban Sengupta, Saraju P. Mohanty "IP Core Protection and Hardware-Assisted Security for Consumer Electronics", The Institute of Engineering and Technology (IET), 2019, Book ISBN: 978-1-78561-799-7, e-ISBN: 978-1-78561-800-0
- Anirban Sengupta, Dipanjan Roy, Saraju P Mohanty, "Triple-Phase Watermarking for Reusable IP Core Protection during Architecture Synthesis", IEEE Transactions on Computer Aided Design of Integrated Circuits & Systems (TCAD), Volume: 37, Issue: 4, April 2018, pp. 742 – 755
- Anirban Sengupta, Mahendra Rathor, "IP Core Steganography using Switch based Key-driven Hash-chaining and Encoding for Securing DSP kernels used in CE Systems", IEEE Transactions on Consumer Electronics (TCE), 2020
- Anirban Sengupta, Mahendra Rathor "IP Core Steganography for Protecting DSP Kernels used in CE Systems", IEEE Transactions on Consumer Electronics (TCE), Volume: 65, Issue: 4, Nov. 2019, pp. 506 - 515
- https://cadforassurance.org/tools/ip-ic-protection/faciometric-hardware-security-tool
- Anirban Sengupta, Rahul Chaurasia, Tarun Reddy "Contact-less Palmprint Biometric for Securing DSP Coprocessors used in CE systems", IEEE Transactions on Consumer Electronics (TCE), Volume: 67, Issue: 3, August 2021, pp. 202-213
- Rahul Chaurasia, Aditya Anshul, Anirban Sengupta "Palmprint Biometric vs Encrypted Hash based Digital Signature for Securing DSP Cores Used in CE systems", IEEE Consumer Electronics (CEM), Volume: 11, Issue: 5, September 2022, pp. 73-80
- Anirban Sengupta, Deepak Kachave, Dipanjan Roy "Low Cost Functional Obfuscation of Reusable IP Cores used in CE Hardware through Robust Locking", IEEE Transactions on Computer Aided Design of Integrated Circuits & Systems (TCAD), Volume: 38, Issue 4, April 2019, pp. 604 - 616
- Anirban Sengupta, Mahendra Rathor "Securing Hardware Accelerators for CE Systems using Biometric Fingerprinting", IEEE Transactions on Very Large Scale Integration Systems, Vol 28, Issue: 9, 2020, pp. 1979-1992
- Anirban Sengupta, E. Ranjith Kumar, N. Prajwal Chandra "Embedding Digital Signature using Encrypted-Hashing for Protection of DSP cores in CE", IEEE Transactions on Consumer Electronics (TCE), Volume: 65, Issue:3, Aug 2019, pp. 398 - 407

Conclusion

The future is:

HLS based hardware IP design with Energy-Security Tradeoff..

Thank you